

Signaux et Systèmes SV

Chapitre 1 Introduction

Michael Unser, LIB/STI

Septembre 2019

LEÇON D'INTRODUCTION

- But du cours
- Tour d'horizon rapide
 - 1.1 Notions de signal et de système
 - 1.2 Exemples de traitement du signal
 - 1.3 Applications dans la vie quotidienne
 - 1.4 Applications en Sciences de la Vie
- Contenu du cours
- Exercices et travaux pratiques

But du cours

- Caractérisation des différents types de signaux, continus et discrets
- Maîtrise et pratique des outils mathématiques de l'analyse de Fourier
- Caractérisation des systèmes linéaires continus et discrets; modélisation et traitement du signal
- Acquisition des bases pour consulter la littérature spécialisée
- Connaissances de base pour concevoir et réaliser des systèmes simples de traitement du signal
- Préparation à l'imagerie et au traitement d'images

Unser / Signaux & Systèmes SV

1-3

Outils de base

Théorie des systèmes linéaires

- Opérateurs linéaires, produit scalaire (rudiments d'analyse fonctionnelle et Hilbertienne)
- Opérateurs de convolution (filtres)
- Equations différentielles ordinaires

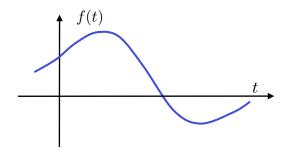
Transformation de Fourier

- Représentation des signaux; modélisation/caractérisation des systèmes linéaires invariant dans le temps (e.g. réponse fréquentielle)
- Techniques de calcul et de résolution dans le domaine de Fourier
- Utilisation rationnelle et efficace; représentation graphique
- Implémentation numérique

Transformation en z

Signaux et systèmes discrets

TOUR D'HORIZON RAPIDE


- 1.1 Notions de signal et de système
- 1.2 Exemples de traitement du signal
- 1.3 S&S dans la vie quotidienne
- 1.4 S&S et Sciences de la Vie

Unser / Signaux & Systèmes SV

1-5

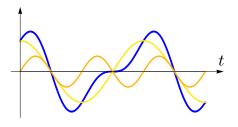
Notion de signal

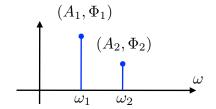
- Signal: support de l'information
- Représentation mathématique: fonction du temps

Exemple: Signaux acoustiques

Voix, musique, bruit

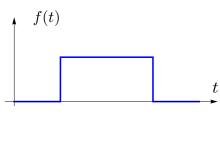
Support physique: ondes de pression

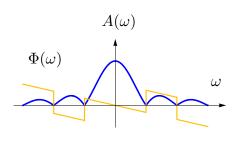

Classification des signaux


		Temps	
		SIGNAUX CONTINUS	SIGNAUX DISCRETS
Amplitude	SIGNAUX NON- QUANTIFIES	f(t) Analogiques	$f(nT)$ $\int f(nT)$ Discrets nT
	SIGNAUX QUANTIFIES	$f_q(t)$ f	$f_q(nT)$ $ -$

Unser / Signaux & Systèmes SV

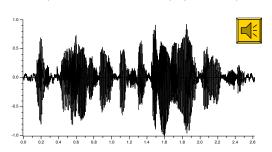
1-7

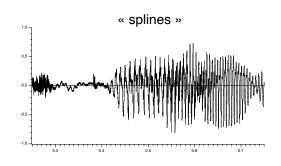

Notion de spectre



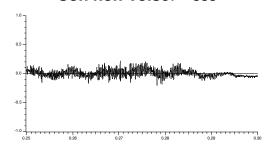
Somme de signaux sinusoïdaux

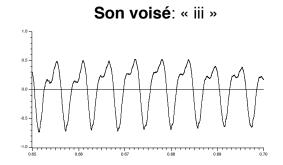
Spectre discret (raies)



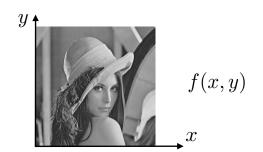


Signal à durée finie Densité spectrale

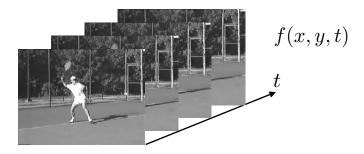

Signal de la parole


« Les splines sont des fonctions polynomiales par morceaux »

Son non-voisé: « sss »



Unser / Signaux & Systèmes SV


1-9

Signaux multidimensionnels

Signaux visuels (photo, film, vidéo)

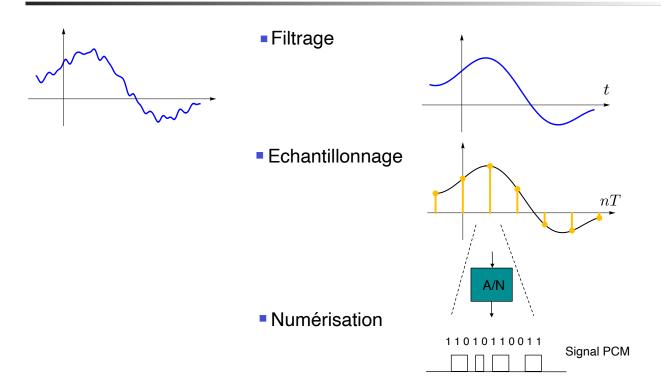
Support physique: ondes électromagnétiques modulées en intensité

Notion de système

- Canal de transmission (analogique)
 - Equations différentielles à constantes localisées
 - Phénomènes d'atténuation et de dispersion
- Système de traitement
 - Filtre analogique (circuit RLC)
 - Filtre numérique (algorithme Matlab ou DSP)
 - Système hybride

$$\Leftrightarrow$$
 Système convolutif: $f_{\mathrm{out}} = h * f_{\mathrm{in}}$

Unser / Signaux & Systèmes SV


1-11

1.2 EXEMPLES DE TRAITEMENT DU SIGNAL

- Conversion A/N: modulation PCM
- Prothèse auditive
- Compression d'images

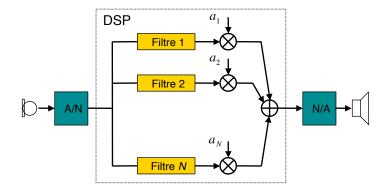
Exemple de traitement du signal

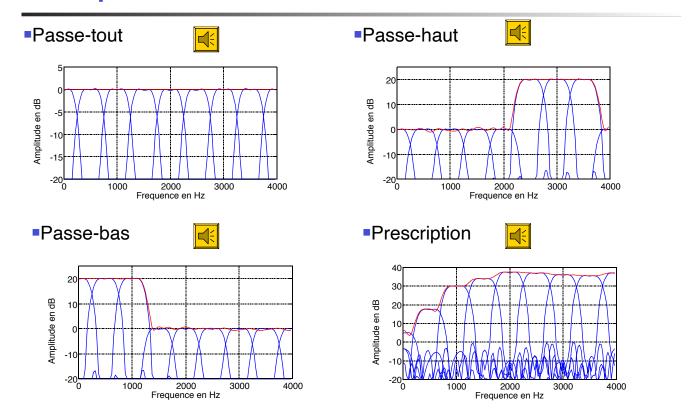
Conversion A/N: modulation PCM (pulse-coded modulation)

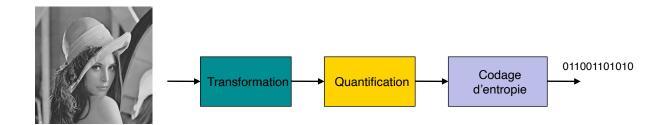
Unser / Signaux & Systèmes SV

1-13

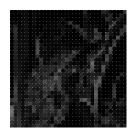
Prothèse auditive digitale


Prothèses auditives "derrière l'oreille"

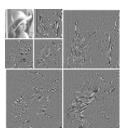

Prothèses auditives "dans le canal"


Exemples de corrections

Unser / Signaux & Systèmes SV


1-15

Traitement d'images: compression



Transformation d'images

JPEG 8×8 DCT

JPEG2000: Ondelettes

Unser / Signaux & Systèmes SV

Compression JPEG

Image originale: 256*256 pixels, 8 bits Taille du fichier (TIFF): 85604 bytes

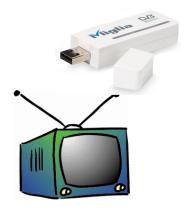
Facteur de qualité JPEG: 20 Taux de compression: 10

Facteur de qualité JPEG: 5 Taux de compression: 22

Facteur de qualité JPEG: 0 Taux de compression: 27

Unser / Signaux & Systèmes SV

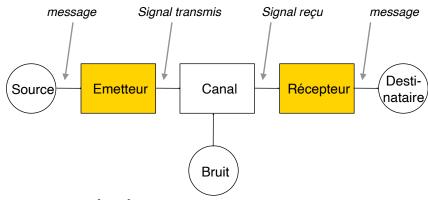
1-17


1.3 S&S DANS LA VIE QUOTIDIENNE

- Communications
 - Sources numériques: signaux discrets, données
 - Sources analogiques: voix
- Multi-médias
- Les micro-systèmes évolués

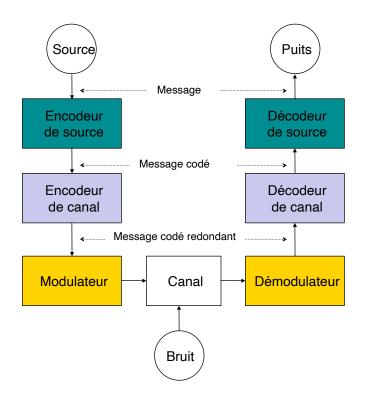
Communications

- Téléphonie: réseau fixe ou sans fils
- Web
- Télévision: analogique ou numérique
- Radiophonie
- GPS



Unser / Signaux & Systèmes SV

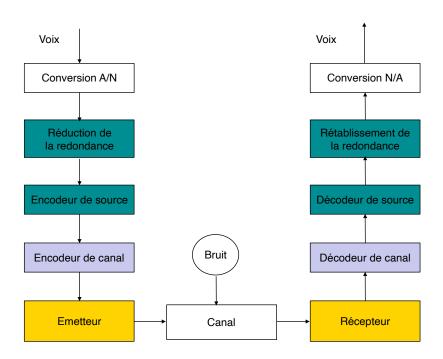
1-19


Structure d'un système de communications

- Canal de transmission
 - · Air, vide, eau
 - · Ligne ou câble téléphonique
 - Fibre optique
- Types de distorsions
 - Bruit
 - Atténuation
 - Dispersion

Système de communications numériques

Source discrète — transmission de données (ex. le WEB)



Unser / Signaux & Systèmes SV

1-21

Système de communications numériques

Source continue — Voix (ex. téléphonie)

eLife ou le nouvel univers multi-média

Photographie numérique: jpeg

Musique: CD, mp3

Studio d'enregistrement numérique

Films: DVD, mpeg

■ Vidéo numérique: mpeg

Web

Télévision numérique (sur demande)

Unser / Signaux & Systèmes SV

1-23

Micro-systèmes traiteurs d'information

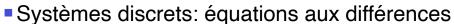
- Aspects techniques
 - Modulation, démodulation
 - Détection, égalisation
 - Compression
 - Cryptographie
 - Traitement du signal

Téléphones portables

Baladeurs mp3

Montre 3ème génération

1.4 S&S ET SCIENCES DE LA VIE


- Théorie des systèmes et modélisation
- Electronique médicale
- Imagerie médicale
- Microscopie et bioimagerie
- Génomique et protéomique
- Fourier au cœur des SV

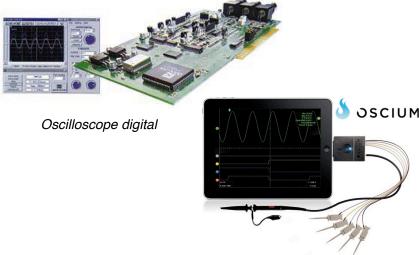
Unser / Signaux & Systèmes SV

1-25

Modélisation et théorie des systèmes

- Systèmes biologiques et équations différentielles
 - Croissance de micro-organismes (bactéries)
 - Evolution temporelle d'une grandeur physique:
 - pression, flux sanguin, concentration d'un marqueur, etc.

- Modèles de populations
 - Division cellulaire
 - Systèmes écologiques: prédateurs/proies
 - Epidémiologie
- Systèmes physiques convolutifs
 - Propagation d'un signal dans un canal
 - Acquisition de signaux
 - Formation et acquisition d'images
 - «Point spread function» en optique



Instrumentation et mesure

Aspects techniques

- Echantillonnage; conversion A/N
- Filtrage
- Analyse spectrale (FFT)

Monitoring

Patch clamp

Unser / Signaux & Systèmes SV

1-27

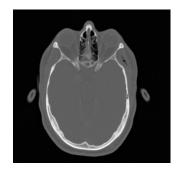
Electronique médicale

Aspects techniques

- Filtrage
- Détection
- Analyse spectrale (FFT)

Pace maker

Prothèse auditive



Imagerie médicale

- Aspects techniques
 - Reconstruction 3D
 - Traitement d'images
 - Analyse quantitative
 - Visualisation

Médecine nucléaire

Tomographie aux rayons X

Echographie fétale

Unser / Signaux & Systèmes SV

1-29

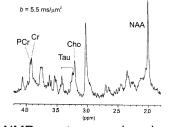
Imagerie par résonance magnétique

1.5 whole body scanner

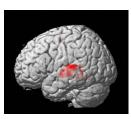
Proton density

T1-weighted

T2-weighted



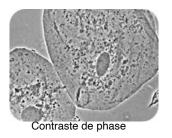
Cole S

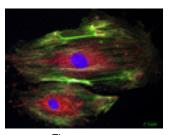

Angiography

Tagged MRI

NMR spectroscopy imaging

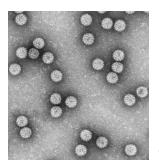
fMRI (T2*)

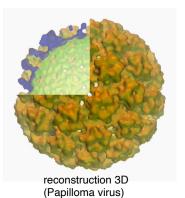

Tensor diffusion


Unser / Signaux & Systèmes SV

Microscopie et bioimagerie

Microscopie optique





Fluorescence (microscopie confocale)

Microscopie électronique

Cryo-EM

Aspect techniques

- Analyse d'images
- Déconvolution
- Reconstruction 3D

Unser / Signaux & Systèmes SV

Fourier au cœur des SV

Spectroscopie RMN

- Spectroscopie RMN par transf. de Fourier
 - Prix Nobel 1991: Ernst
- Structure 3D des protéines
 - Nobel 2002: Wüthrich

Crystallographie

- Diffraction aux rayons X
- Nobel 1914: von Laue
- Nobel 1915: Bragg and Bragg
- Crystaux, structures hélicoïdales
- Structure 3D des macromolécules
 - Nobel 1962: Watson, Crick and Wilkins
 - Nobel 1962: Perutz and Kendrew
 - Nobel 1982: Klug
- Nobel 1988: Deisenhofer, Huber and Michel

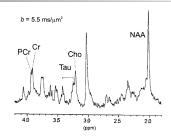


Figure de diffraction de l'ADN (Rosalind Franklin)

1-31

Contenu du cours: semestre d'hiver

- Systèmes analogiques linéaires
- Analyse de Fourier appliquée à la représentation des signaux et aux opérations fondamentales de traitement
- Echantillonnage des signaux analogiques
- Techniques de modulation
- Analyse et synthèse des filtres analogiques
- Introduction à l'imagerie

Unser / Signaux & Systèmes SV

1-33

Contenu du cours: semestre d'été

- Signaux discrets et numériques; transformée en z
- Systèmes discrets linéaires; filtres numériques
- Transformée de Fourier discrète; algorithmes rapides (FFT et convolution)
- Compression du signal; codage de source
- Notions de codage de canal
- Processus stationnaires; détection de signaux dans du bruit

1.5 BIBLIOGRAPHIE

Ouvrage conseillé

 B.P. Lathi, Signal Processing and Linear Systems, Oxford University Press, UK, 1998.

Autres

- E.W. Kamen, B.S. Heck, *Fundamentals of Signals and Systems*, Prentice-Hall, 1999.
- B.P. Lathi, *Modern Digital and Analog Communication Systems*, 3rd Edition, Oxford University Press, 1998.

Unser / Signaux & Systèmes SV

1-35

Signaux & Systèmes: travail personnel

- Exercices
 - But des exercices
 - Organisation
 - Corrigés
- Illustrations Matlab / SysQuake
 - But des illustrations
 - Organisation
- Travaux pratiques
 - Projets de semestres (7e ou 8e semestre)
 - Travail de diplôme